Ayya Raju Middepogu


Cyanobacteria is a photosynthetic prokaryotes, these are obtain their energy through photosynthesis. In this review we summarize the effect of heavy metals on cyanobacterial photosynthesis and its detoxification. Now a day’s metal contamination due to natural and anthropogenic sources is a global environment concern. Metals were affected the photosynthetic process like, photosystem II complex, cytochrome b6f complex, photosystem I complex and ATP synthase, photosynthetic energy transfer process in cyanobacteria phycobilisomes. Here it is also mentioned heavy metal induced altered macromolecules metabolism and changes in central dogma of life (DNA→ mRNA → Protein). And also recent advances have been made in understanding heavy metal-cyanobacteria interaction and their application for metal detoxification. 

Full Text:



Pisciotta JM, Zou Y and Baskakov IV. 2010 Light-Dependent Electrogenic Activity of Cyanobacteria. PLoS ONE. 5(5)e10821:1-10

Marschner H. 1986 Mineral Nutrition in Higher Plants. London: Academic Press/Harcourt B & Company Publishers.

Adriano, D.C.1986. Elements in the Terrestrial Environment. Springer Verlag.

Modaihsh, A.S., Al-Swailem, M.S. and Mahjoub, M.O. 2004. Heavy metals content of commercial inorganic fertilizers used in the Kingdom of Saudi Arabia. Sultan Qaboos Univ. Agric. Marine Sci., 9(1): 21-25.

Chehregani, A., Malayeri, B.E., 2007. Removal heavy metals by native accumulator plants. International Journal of Agriculture and Biology 9, 462e465.

Wuana RA, Okieimen FE. 2011a. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology 2011, 1-20.

Thangavel P, and Subbhuraam CV 2004 Phytoextraction: Role of hyper accumulators in metal contaminated soils. P Indian Acad Sci B.70:109–130.

Salem, HM., Eweida, EA. and Farag A 2000 Heavy metals in drinking water and their Environmental impact on human health. ICEHM, Cairo University, Egypt, September, 2000, page 542- 556.

Pulford, I.D. and Watson, C. 2003. Phytoremediation of heavy metal contaminated land by trees - A Review. Environ. Int., 29, 529–540.

Khan, M.S., A. Zaidi and P.A. and Wani. 2012a. Chromium plant growth promoting rhizobacteria interactions: Toxicity and management. In: Toxicity of Heavy Metals to Legumes and Bioremediation. (Eds.): A. Zaidi, P.A. Wani and M.S. Khan. Springer-Verlag Wien, pp. 67-88.

Khan MS, Zaidi A, Wani PA 2007 Role of phosphate-solubilizing microorganisms in sustainable agriculture-a Review. Agron Sustain Dev, 27:29-43.

Tariq, S.R., Shah, M.H., Shaheen, N., Khalique, A., Manzoor, S. and Jaffar, M. 2006 Multivariate analysis of trace metal levels in tannery effluents in relation to soil and water- A case study from Peshawar, Pakistan. Journal of Environmental Management, 79: 20-29.

Cervantes, C., J. Campos-Garcıa, S. Devars, F. Gutierrez-Corona, H. Loza-Tavera, J. C. Torres-Guzman, et al., 2001. Interactions of chromium with microorganisms and plants. FEMS Microbiol. Rev., 25: 335-347.

Panda, S.K., and S. Choudhury. 2005. Changes in nitrate reductase activity and oxidative stressresponse in the moss Polytrichum commune subjected to chromium, copper and zincphytotoxicity. Brazilian Journal of Plant Physiology. 17: 191–7.

Ali, N. A., D. Dewez, O. Didur, and R. Popovic, 2006. Inhibition of photosystem II photochemistry by Cr is caused by alteration of both D1 protein and oxygen evolving complex. Photosynth. Res., 89: 81-87.

Meharg, A., 1994. Integrated tolerance mechanisms constitutive and adaptive plant responses to elevated metal concentrations in the environment. Plant.Cell Environ. 17, 989–993.

AyyaRaju, M Murthy. S.D.S.2011 Altered energy transfer in phycobilisomes of the cyanobacterium, under the influence of chromium (III) Spirulina platensis. Journal of Pure and Applied Sciences, 19:1-3.

Baryla A, Carrier P, Franck F, Coulomb C, Sahut C, Havaux M.2001. Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: causes and consequences for photosynthesis and growth. Planta 212, 696–709.

Devi, SR, and Prasad MNV. Membrane lipid alterations in heavy metal exposed plants. In: Prasad MNV, Hagemeyer J, editors. Heavy metal stress in plants. From molecules to ecosystems. Berlin: Springer; 1999. pp. 99–116.

Janicka R, Katarzyna K, Marek B, Grazyna K 2008 Response of plasma membrane H+-ATPase to heavy metal stress in Cucumis sativus roots. Journal of Experimental Botany 59: 3721-3728. doi: 10.1093/jxb/ern219.

Mansour MMF, Salama KHA, Al-Mutawa MM 2003 Transport proteins and salt tolerance in plants. Plant Science 164: 891-900. doi: 10.1016/S0168-9452(03)00109-2.

Mansour MMF, Salama KHA 2004 Cellular basis of salinity tolerance in plants. Environmental and Exp Bot, 52: 113-122. doi: 10.1016/j.envexpbot.2004.01.009.

Sacina, M., Tobin, M. J. and Mullineaux, C. W. 2001 Diffusion of phycobilisomes on the thylakoid membranes on the cyanobacterium Synechococcus 7942; Effect of phycobilisome size, temperature and membrane lipid composition. J. Biol.Chem. 276, 46830-46834.

Venkataramanaiah, V. Murthy, S. D. S., and Sudhir, P. 2004 Effect of high temperature on photosynthetic electron transport activities of the cyanobacterium, Spirulina platensis. Photosynthetica 41, 331-334.

Wen, X., Gong, H. and Lu, C. 2005 Heat stress induces an inhibition of excitation energy transfer from phycobilisomes to Photosystem II but not Photosystem I in a cyanobacterium Spirulina maxima. Plant Physiol Biochem. 43, 389-395.

Sudhir, P., Pogoryelov, D., Kovacs, L., Garab, G. and Murthy, S.D. S. 2005 The effects of salt stress on photosynthetic electron transport and thylakoid membrane proteins in the cyanobacterium Spirulina platensis. J. Biochem. Mol. Biol. 38,481-485.

Li, H., Li, D., Yang, S., Xie, J. and Zhao, J. 2006 The state transition mechanism- simply depending on light on and off in Spirulina platensis. Biochim. Biophys. Acta 1757, 1512-1519.

Nagalakshmi, N. Prasad, M.N.V. 2001 Responses of glutathione cycle enzymes and glutathione metabolism to copper stress inScenedesmus bijugatus, Plant Sci.160:291e299.

Chanu,T.T, Panda, P. Mazumdar, P. Kumar, D. Sharma, G.D. Sahoo, L. Panda, S.K. 2012 Excess copper induced oxidative stress and response of antioxidants in rice, Plant Physiol.Biochem. 53:33e39.

Reddy, G.B., E. Ford and D. Aldridge, 1986. Seasonal changes in bacterial numbers and plant nutrients from point and non-point source ponds. Environ. Pollut., 40: 359-367.

Carpentier SC, Witters E, Laukens K, Van Onckelen H, Swennen R, Panis B: 2007 Banana (Musa spp.) as a model to study the meristem proteome: acclimation to osmotic stress. Proteomics, 7:92-105.

Aspinall D, Paleg LG. 1981. Proline accumulation: physiological aspects. In: Paleg LG, Aspinall D, eds. The physiology andbiochemistry of drought resistance in plants.Australia: Academic Press, 205–240.

Ashraf M and Harris PJC. 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166,3-16.

Naidu BP, Paleg LG, Aspinall D, Jennings AC, Jones GP. 1991. Amino acid and glycine-betaine accumulation in cold stressed seedlings. Phytochemistry 30, 407–409.

Schat H, Sharma SS, Vooijs R. 1997. Heavy metal-induced accumulation of free proline in a metal-tolerant and a non-tolerant ecotype of Silene vulgaris Physiologia Plantarum 101,477–482.

Watts, A., and J. J. H. H. M. DePont. 1985, 1986. Progress in Protein-Lipid Interactions, Vol. I, 1985; Vol. II, 1986. Elsevier, Amsterdam.

Sandmann G and Boger P 1980 Copper mediated lipid peroxidation processes in photosynthetic membranes. Plant Physiology 66: 797-800.

Gong P, Ogra, Y and Koizumi S 2000 Inhibitory effects of heavy metals on transcription factor Sp1. Ind Health. 38(2):224-227.

Zamble, D. B. 2008. Metalloregulatory Proteins. Wiley Encyclopedia of Chemical Biology. 1–10.

Masarovicova E, Cicak A, Stefanick I. 1999 Plant responses to air pollution and heavy metal stresses. In: Pessarakli M, ed. Handbook of Plant and Crop Stress. 2d ed. New York: Marcel Dekker,569–598.

Prasad MNV, Strzalka K 1999 Impact of heavy metals on photosynthesis. In Heavy Metal Stress in plants (Prasad MNV, Hagemeyer J eds.), 117-138, Springer Verlag, Berlin.

Zaccaro, M.C., Salazar, C., Zulpa de Caire, G., Storni de Cano, M., Stella, A.M., 2001. Lead toxicity in cyanobacterial porphyrin metabolism. Environ. Toxicol. 16, 61–67.

MacColl, R. (1998) Cyanobacterial phycobilisomes. J Struct Biol, 124 : 311–334.

Kana R, Prášil O, Mullineaux CW 2009 Immobility of phycobilins in the thylakoid lumen of a cryptophyte suggests that protein diffusion in the lumen is very restricted. FEBS Lett 583: 670–674. doi: 10.1016/j.febslet.2009.01.016.

Bertrand M, Poirier I. 2005. Photosynthetic organisms and excess of metals. Photosynthetica, 43: 345-353.

Kupper H, Setlik I, Setlikova E, Ferimazova N, Spiller M, Kupper FC 2003 Copper –induced inhibition of photosynthesis: Limiting steps of in vivo copper chlorophyll formation in Scenedesmus quadricauda. Functional Plant Biology 30:1187-1196.

Rai LC, Gau JP, Kumar HD.1981 Phycology and heavy-metal pollution. Biol. Rev. Cambridge Phil. Soc. 56: 99-151.

Wong PK, Chang L. 1991 Effects of copper, chromium and nickel on growth, photosynthesis, and chlorophyll a synthesis of Chlorella pyrenoidosa251. Environ. Pollut. 72: 127-140.

Corradi GM, Gorbi G, Rieci A, Torelli A, Bassi M. 1995 Chromium–induced sexual reproduction gives rise to a Cr tolerant progeny in Scenedesmus actus. Ecotoxicol. Environ. Safety 32: 12-19.

Genter RB. 1996 Ecotoxicology of inorganic stresses. In: RJ Stevenson, ML Bothwell, RL Lowe (eds.), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego, 403-468.

Conway HL 1978 Sorption of arsenic and cadmium and their effect on growth micronutrient utilization and photosynthesis pigment composite of Asterionella formosa.J. Fish Res Board. Can. 35: 286-294.

Rouillon, R, Piletsky, S.A, Breton, F., Piletska, E.V., Carpentier, R. In: Biotechnological Applications of Photosynthetic Proteins:Photosystem II Biosensors for Heavy Metals Monitoring Biochips, Biosensors and Biodevices Biotechnology Intelligence Unit 2006, pp 166-174.

Burda K, Kruk J, Strzalka K, Schmid GH. 2002 Stimulation of oxygen evolution in photosystem II by copper (II) ions. Z. Naturforsch.; 57c:853–857.

Yruela I, Alfonso M, de Zarate IO, Montoya G, Picorel R. 1993 Precise location of the Cu(II) inhibitory binding site in higher plant and bacterial photosynthetic reaction centers as probed by light-induced absorption changes. J. Biol. Chem. 268:1684–1689.

Yruela I, Alfonso M, Baron M, Picorel R. 2000 Copper effect on the protein composition of photosystem II. Physiol. Plant. 110:551–557.

Mohanty N, Vass I, Demeter S. 1989 Impairment of photosystem II activity at the level of secondary electron acceptor in chloroplasts treated with cobalt, nickel and zinc ions. Physiol. Plant. 76:386–390.

Andersson B, Styring S 1991 Photosystem II: molecular organization, function, and acclimation. Current Topic in Bioenergetics. 16: 1-81.

Dixit V, Pandey V, Shyam R. 2002 Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum root mitochondria. Plant Cell Environ 25:687 -690.

Tripathi, R.D., Srivastava, S., Mishra, S. Singh, N. Tuli, R. Gupta, D.K. and Maathuis F.J.M. 2007, Arsenic hazards: Strategies for tolerance and remediation by plants. Trends Biotechnol. 25, 158 -1 65.

Belatik, A., Hotchandani, S., Tajmir-Riahi, H., Carpentier, R 2013 Alteration of the structure and function of photosystem I by Pb2+. ournal of Photochemistry and Photobiology B: Biology 123:41-47.

Tuba Z and Csintalan Zs 1992 The effect of pollution on the physiological processes in plants. In: Kovács M, Podani J, Tuba Z, Turcsányi G, Csintalan Zs and Meenks JLD (eds) Biological Indicators in Environmental Protection, pp 169–191. Ellis Horwood, Chichester.

Robert I. Houtz, Ross O. 1988 Nable and george m. Cheniae Evidence for Effects on the in Vivo Activity of RibuloseBisphosphate Carboxylase/Oxygenase during Development of Mn Toxicity in Tobacco' Plant Physiol. 86, 1143-1149

Madhava Rao, K. V. and Sresty, T. V. 2000 Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci., 157:113 – 128.

Léon, V., Rabier, J., Notonier, R., Barthelémy, R., Moreau, X., Bouraïma-Madjèbi, S., Viano, J. and Pineau, R. 2005 Effects of three nickel salts on germinating seeds of Grevillea exul var. rubiginosa, an endemic serpentine proteaceae. Annu. Bot., 95: 609–618.

De Filippis LF, Hampp R, Ziegler H. 1981 The effect of sub-lethal concentration of zinc, cadmium and mercury on EuglenaII. Respiration, photosynthesis and photochemical activities. Arch Microbiol. 128: 407-411.

Chaney RL 1993 Zinc phytotoxicity. In: Robson AD (ed) Zinc in soils and plants. Developments in plant and soil sciences. Kluwer Academic Publishers, Dordrecht, pp 135–150.

Van Assche F, Clijsters H 1986a Inhibition of photosynthesis by treatment ofPhaseolus vulgariswith toxic concentration of zinc: effects on electron transport and photophosphorylation. Physiol Plant 66:717–721.

Nash, S.M.B, Quayle, P.A., Schreiber, U. & Müller, F. 2005 The selection of a model microalgal species as biomaterial for a novel aquatic phytotoxicity assay. Aquatic Toxicology, 72, 315–326.

Horcsik, Z. T., L. Kovacs, R. Laposi, 1. Meszaros, G. Lakatos et G. Garab. 2007. "Effect of chromium on photosystem 2 in the unicellular green alga, Chlorella pyrenoidosa". Photosynthetica, vol. 45, p. 65-69.

Devi, S.R. and Prasad MNV 2004 Membrane lipid alterations in heavy metal exposed plants, In: M.N.V. Prasad (2nd Ed), Heavy Metal Stress in plants: From biomolecules to ecosystems. Springer-Verlag. Heidelberg. Narosa New Delhi pp. 127-145.

Zsiros, O., Allakhverdiev, S.I., Higashi, S., Watanabe, M., Nishiyama, Y., Murata, N. 2006 Very strong UV-A light temporally separates the photoinhibition of photosystem II into light-induced inactivation and repair. – Biochim. biophys. Acta 1757: 123-129,.

Michel, K. P., and E. K. Pistorius. 2004. Adaptation of the photosynthetic electron transport chain in cyanobacteria to iron deficiency: the function of IdiA and IsiA. Physiol. Plant. 120:36–50.

Ivanov AG, Sane PV, Krol M, Gray GR, Balseris A, Savitch L.V, Öquist G, Hüner N.P.A. 2006 Acclimation to temperature and irradiance modulates PSII charge recombination. FEBS Letters, 580:2797-2802.

Bernal, M, Roncel, M, Ortega, JM, Picorel, R, Yruela I 2004. Copper effect on cytochrome b559 of photosynstem II under photoinhibitory conditions. Physiol Plant. 120:686-694.

Sujak, A. 2005. Interaction between cadmium, zinc and silver-substituted platocyanin and cytochrome b6f complex-heavy metals toxicity towards photosynthetic apparatus. Acta Physiologiae Plantarum 27(1):61-69.

Teige, M., B. Huchzermeyer. and G. 1990 Schulz Inhibition of chloroplast ATP synthasel ATPase is a primary effect of heavy metal toxicity in spinach plants. Biochem. Physioi. Pflanzen 186, 165-168.

Stobart A K,Griths W T, Ameen-Bukhari I, Sherwood R P,1985. The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley. Plant Physiology, 63: 293–298.

Vajpayee P, Tripati RD, Rai UN, Ali MB, Singh SN 2000 Chromium accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content of Nymphaea alba. Chemosphere 41:1075-1082.

Hampp, R., K. Beulich and H. Zeigler. 1976. Effects of zinc and cadmium on photosynthetic CO2 fixation and Hill activity of isolated spinach chloroplasts Z. Pflanzenphysiol. 77:336-344.

Mittler, R., 2002, Oxidative stress, antioxidants and stress tolerance, Trends in Plant Science, 7, 405-410.

Vaidyanathan, H., P. Sivakumar, R. Chakrabarsty, G. Thomas, 2003, Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativaL.)-differential response in salt-tolerant and sensitive varieties, Plant Science, 165, 1411-1418.

Quiles, M. J., N. I. López, 2004, Photoinhibition of photosystems I and II induced by exposure to high light intensity during oat plant grown effects on the chloroplastic NADH dehydrogenase complex, Plant Science,166, 815-823.

Grill, E., Zenk, M. H. 1985 Induction of heavy metalsequestering phytochelatin by cadmium in cell cultures of Rauwolfia serpentina. Naturwissenschaften 72, 432-433.

Grill,E., Winnacker, E.-L., Zenk, M. H. 1988 Occurence of heavy metal binding phytochelatins in plants growing in a mining refuse area. Experientia 44, 539 - 540.

Vatamaniuk OK, Bucher EA, Ward JT, Rea PA. 2001. A new pathway for heavy metal detoxification in animals phytochelatin synthase is required for cadmium tolerance in Caenorhabditis elegans. J. Biol. Chem. 276:20817–20.

Torres, M., J. Goldberg and T.E. Jensen, 1998. Heavy metal uptake by polyphosphate bodies in living and killed cells of Plectonema boryanum (Cyanophyceae). Microbios, 96: 141-147.

Cobbett C, Goldsbrough P. 2002 Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53: 159–182.

Yurekli, F., Kucukbay, Z. 2003. Synthesis of phytochelatins in Helianthus annuus is enhanced by cadmium nitrate. In: Acta Bot. Croat. 62 (1), 21–25, 2003, ISSN 0365–0588.


  • There are currently no refbacks.

Innoriginal: International Journal of Sciences (ISSN: 2349-7041)


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.